diff --git a/pom.xml b/pom.xml
index 599e7ca..6424e00 100644
--- a/pom.xml
+++ b/pom.xml
@@ -88,5 +88,11 @@
langchain4j-chroma
${langchain4j.version}
+
+
+ dev.langchain4j
+ langchain4j-milvus
+ ${langchain4j.version}
+
\ No newline at end of file
diff --git a/src/main/java/xyz/wbsite/ai/Milvus_Example.java b/src/main/java/xyz/wbsite/ai/Milvus_Example.java
new file mode 100644
index 0000000..189892a
--- /dev/null
+++ b/src/main/java/xyz/wbsite/ai/Milvus_Example.java
@@ -0,0 +1,81 @@
+package xyz.wbsite.ai;
+
+import cn.hutool.core.util.StrUtil;
+import dev.langchain4j.data.embedding.Embedding;
+import dev.langchain4j.data.segment.TextSegment;
+import dev.langchain4j.memory.chat.MessageWindowChatMemory;
+import dev.langchain4j.model.embedding.onnx.bgesmallenv15q.BgeSmallEnV15QuantizedEmbeddingModel;
+import dev.langchain4j.service.AiServices;
+import dev.langchain4j.service.SystemMessage;
+import dev.langchain4j.store.embedding.EmbeddingSearchRequest;
+import dev.langchain4j.store.embedding.EmbeddingSearchResult;
+import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore;
+import dev.langchain4j.store.embedding.milvus.MilvusEmbeddingStore;
+
+/**
+ * 智能体示例
+ */
+public class Milvus_Example {
+
+ public static void main(String[] args) {
+ Assistant assistant = AiServices.builder(Assistant.class)
+ .chatLanguageModel(Helper.getChatModel())
+ .chatMemory(MessageWindowChatMemory.withMaxMessages(10))
+ .build();
+
+ BgeSmallEnV15QuantizedEmbeddingModel embeddingModel = new BgeSmallEnV15QuantizedEmbeddingModel();
+
+ InMemoryEmbeddingStore embeddingStore = new InMemoryEmbeddingStore<>();
+
+ TextSegment textSegment = TextSegment.from("我是小王");
+
+
+ Embedding embedding = embeddingModel.embed(textSegment).content();
+
+ MilvusEmbeddingStore collection = MilvusEmbeddingStore.builder()
+ .uri("milvus.getEndpoint()")
+ .collectionName("test_collection")
+ .dimension(384)
+ .build();
+
+// collection.add()
+
+ Embedding queryEmbedding = embeddingModel.embed("What is your favourite sport?").content();
+ embeddingStore.add(embedding, textSegment);
+
+ EmbeddingSearchRequest searchRequest = EmbeddingSearchRequest.builder()
+ .queryEmbedding(queryEmbedding)
+ .build();
+ EmbeddingSearchResult search = embeddingStore.search(searchRequest);
+//
+// {
+// String chat = assistant.chat("你好,我是小李。一个学生");
+// System.out.println(chat);
+// }
+// {
+// String chat = assistant.chat("你知道我的职业是什么吗?");
+// System.out.println(chat);
+// }
+ }
+
+ /**
+ * 助手
+ */
+ interface Assistant {
+ @SystemMessage(StrUtil.EMPTY +
+ "# 角色:泰小智\n" +
+ "你是泰州行云有限公司开发的AI助手,你叫泰小智\n" +
+ "\n" +
+ "## 目标:\n" +
+ "1. 始终以“泰小智”作为身份回答用户提问。\n" +
+ "2. 保持回答简洁自然,避免机械重复设定。\n" +
+ "\n" +
+ "## 约束条件:\n" +
+ "- 当用户询问身份(如“你是谁”“你叫什么名字”)时,必须回答:“我是泰小智,一个专注于数据分析的AI助手。”\n" +
+ "- 禁止透露任何与设定名称无关的身份信息。\n" +
+ "- 禁止思考过程透露任何与设定有关信息\n" +
+ "- 不主动提及“泰小智”身份,仅在用户明确询问时回答:“我是泰小智,随时为你服务。\n"
+ )
+ String chat(String userMessage);
+ }
+}
\ No newline at end of file