上传备份

master
王兵 5 months ago
parent f5bed1dc2c
commit 648341b684

@ -52,7 +52,6 @@
<artifactId>hutool-all</artifactId>
<version>5.8.24</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-core</artifactId>
@ -65,24 +64,25 @@
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<artifactId>langchain4j-ollama</artifactId>
<version>${langchain4j.version}</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-ollama</artifactId>
<artifactId>langchain4j-easy-rag</artifactId>
<version>${langchain4j.version}</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-easy-rag</artifactId>
<artifactId>langchain4j-embeddings</artifactId>
<version>${langchain4j.version}</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-embeddings</artifactId>
<artifactId>langchain4j-embeddings-all-minilm-l6-v2</artifactId>
<version>${langchain4j.version}</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-chroma</artifactId>
@ -94,5 +94,21 @@
<artifactId>langchain4j-milvus</artifactId>
<version>${langchain4j.version}</version>
</dependency>
<!-- 嵌入向量库 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-qdrant</artifactId>
<version>1.0.0-beta2</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<version>${langchain4j.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
</project>

@ -48,7 +48,7 @@ public class Naive_RAG_Example {
//此存储将用于在每次与LLM交互时搜索相关细分市场。
//为简单起见,此示例使用内存中的嵌入存储,但您可以从任何支持的存储中进行选择。
//Langchain4j目前支持超过15个流行的嵌入商店。
EmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>();
InMemoryEmbeddingStore<TextSegment> embeddingStore = new InMemoryEmbeddingStore<>();
embeddingStore.addAll(embeddings, segments);
// 我们还可以使用EmbeddingStoreIngestor将上面的手动步骤隐藏在更简单的API后面。

@ -0,0 +1,30 @@
package xyz.wbsite.ai;
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.model.embedding.onnx.allminilml6v2.AllMiniLmL6V2EmbeddingModel;
import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.qdrant.QdrantEmbeddingStore;
import static dev.langchain4j.internal.Utils.randomUUID;
/**
*
*/
public class Qdrant_Embedding_Example {
public static void main(String[] args) {
EmbeddingStore<TextSegment> embeddingStore =
QdrantEmbeddingStore.builder()
.host("127.0.0.1")
.port(6334)
.collectionName("langchain4j-" + randomUUID())
.build();
EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel();
TextSegment segment1 = TextSegment.from("I've been to France twice.");
Embedding embedding1 = embeddingModel.embed(segment1).content();
embeddingStore.add(embedding1, segment1);
}
}
Loading…
Cancel
Save

Powered by TurnKey Linux.