上传备份

master
王兵 5 months ago
parent c7d741ec6b
commit 8ff8a139aa

@ -101,6 +101,18 @@
<artifactId>langchain4j-qdrant</artifactId>
<version>1.0.0-beta2</version>
</dependency>
<!-- 日志框架 -->
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.11</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.32</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>

@ -10,7 +10,7 @@ import java.util.List;
public class Helper {
private static OpenAiStreamingChatModel openAiStreamingChatModel = OpenAiStreamingChatModel.builder()
.baseUrl("http://192.168.88.105:11434/v1")
.baseUrl("http://192.168.88.106:11434/v1")
.apiKey("1")
.modelName("qwen2.5:0.5b")
.logRequests(true)
@ -18,7 +18,7 @@ public class Helper {
.build();
private static OpenAiChatModel openAiChatModel = OpenAiChatModel.builder()
.baseUrl("http://192.168.88.105:11434/v1")
.baseUrl("http://192.168.88.106:11434/v1")
.apiKey("1")
.modelName("deepseek-r1:1.5b")
.logRequests(true)
@ -26,13 +26,13 @@ public class Helper {
.build();
private static OpenAiChatModel toolChatModel = OpenAiChatModel.builder()
.baseUrl("http://192.168.88.105:11434/v1")
.baseUrl("http://192.168.88.106:11434/v1")
.apiKey("1")
.modelName("qwen2.5:0.5b")
.build();
private static OpenAiChatModel gemmaModel = OpenAiChatModel.builder()
.baseUrl("http://192.168.88.105:11434/v1")
.baseUrl("http://192.168.88.106:11434/v1")
.apiKey("1")
.modelName("gemma3:4b")
.build();

@ -16,8 +16,8 @@ public class Text_Compare_Example {
EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel();
// 将文本转换为向量
Embedding embedding1 = embeddingModel.embed("用户问的是多少。我得先看看有没有相关的信息在知识库里。知识库里的内大伦供电局的电话是1234567800容主要是关于行政审批事项的各种申报材料和流程比如抵押登记、土地流转、林权抵押等等还有些是关于合同备案、产权调换、房改售房之类的。看起来里面没有提到供电局的信息。 用户可能需要联系办理业务或者咨询问题,所以才会询问电话号码。但我这里找不到相关信息,可能需要用户自己去查询或者访问相关网站获取最新的联系方式。另外,我应该礼貌地告知用户信息中没有提供所需内容,并建议他们通过其他途径获取帮助").content();
Embedding embedding2 = embeddingModel.embed("大伦供电局的电话是?").content();
Embedding embedding1 = embeddingModel.embed("工伤医疗费的申领").content();
Embedding embedding2 = embeddingModel.embed("预告登记的转移").content();
double between = CosineSimilarity.between(embedding1, embedding2);
System.out.println("余弦相似度: " + between); // 值越接近1越相似

Loading…
Cancel
Save

Powered by TurnKey Linux.